You can try one of the following approaches:
1. Get the values of the last column in a variable, drop the last column, and insert it to the DataFrame as the first column.
Example:
>>> import pandas as pd
>>> a={'A':[11,12,13], 'B':[21,22,23],'C':[31,32,33]}
>>> df=pd.DataFrame(a)
>>> df
A B C
0 11 21 31
1 12 22 32
2 13 23 33
>>> v=df[list(df.columns)[-1]] #get the values of the last column
>>> df=df.drop(['C'],axis=1) #drop the column
>>> df
A B
0 11 21
1 12 22
2 13 23
>>> df.insert(0,'C',v) #insert as the first column
>>> df
C A B
0 31 11 21
1 32 12 22
2 33 13 23
2. Get the column names of the DataFrame in a list, rearrange the list of columns in your desired order, and use the rearranged list as an index for the DataFrame.
>>> import pandas as pd
>>> a={'A':[11,12,13], 'B':[21,22,23],'C':[31,32,33]}
>>> df=pd.DataFrame(a)
>>> df
A B C
0 11 21 31
1 12 22 32
2 13 23 33
>>> cols = list(df.columns) #column names
>>> cols
['A', 'B', 'C']
>>> cols = [cols[-1]] + cols[:-1] #make last column first
>>> cols
['C', 'A', 'B']
>>> df=df[cols]
>>> df
C A B
0 31 11 21
1 32 12 22
2 33 13 23