You can use the describe() function of the pandas module. It returns the basic summary of the data in each column and the summary includes mean and standard deviation too.
Here is an example:
>>> import pandas as pd>>> aa={'A':[1,2,3,4], 'B':[11,12,13,14], 'C':[21,22,23,24]}>>> aa{'A': [1, 2, 3, 4], 'B': [11, 12, 13, 14], 'C': [21, 22, 23, 24]}>>> df = pd.DataFrame(aa)>>> df A B C0 1 11 211 2 12 222 3 13 233 4 14 24>>> df.describe() A B Ccount 4.000000 4.000000 4.000000mean 2.500000 12.500000 22.500000std 1.290994 1.290994 1.290994min 1.000000 11.000000 21.00000025% 1.750000 11.750000 21.75000050% 2.500000 12.500000 22.50000075% 3.250000 13.250000 23.250000max 4.000000 14.000000 24.000000