I want to calculate the distance between two NumPy arrays using the following formula.d = (sum[(xi - yi)2])1/2Is there any Numpy function for the distance?E.g.x=np.array([2,4,6,8,10,12])y=np.array([4,8,12,10,16,18])d = 11.49
You can use the Numpy sum() and square() functions to calculate the distance between two Numpy arrays. You can also use euclidean() function of scipy.Here is an example:
>>> import numpy as np>>> x=np.array([2,4,6,8,10,12])>>> y=np.array([4,8,12,10,16,18])>>> d = np.sqrt(np.sum(np.square(x-y)))>>> d11.489125293076057>>> from scipy.spatial.distance import euclidean>>> euclidean(x,y)11.489125293076057
>>> import numpy as np>>> x=np.array([2,4,6,8,10,12])>>> y=np.array([4,8,12,10,16,18])>>> d = np.sqrt(np.sum(np.square(x-y)))>>> d11.489125293076057
>>> from scipy.spatial.distance import euclidean>>> euclidean(x,y)11.489125293076057
If you just want to use the absolute value of the difference instead of square, you can use the following code:
>>> import numpy as np>>> x=np.array([2,4,6,8,10,12])>>> y=np.array([4,8,12,10,16,18])>>> d = np.sum(np.abs(x-y))>>> d26