You can use scipy's linear algebra function eig() to calculate eigenvalues and eigenvectors of a square matrix. You can set the parameters to get left or right eigenvectors. By default, it returns the right eigenvectors.
Here is an example:
>>> from scipy import linalg as LA
>>> import numpy as np
>>> a=np.array([[11,12,13],[91,2,3],[52,23,24]])
>>> a
array([[11, 12, 13],
[91, 2, 3],
[52, 23, 24]])
>>> evals, evecs = LA.eig(a, left=True, right=False)
>>> evals
array([ 61.69905021+0.j, -23.82135282+0.j, -0.8776974 +0.j])
>>> evecs
array([[-0.89186516, -0.94421099, -0.86747631],
[-0.30717734, 0.22261074, -0.15659578],
[-0.33199189, 0.24271397, 0.47218917]])
>>> evals, evecs = LA.eig(a, left=False, right=True)
>>> evals
array([ 61.69905021+0.j, -23.82135282+0.j, -0.8776974 +0.j])
>>> evecs
array([[-3.26538091e-01, -2.63826498e-01, 9.03547963e-04],
[-5.36838695e-01, 9.49508315e-01, -7.35214463e-01],
[-7.77931289e-01, -1.69792632e-01, 6.77833960e-01]])
You can also use Numpy's linear algebra function eig(). It returns eigenvalues and right eigenvectors of a square matrix.
Here is an example:
>>> from numpy import linalg as LA
>>> import numpy as np
>>> a=np.array([[11,12,13],[91,2,3],[52,23,24]])
>>> a
array([[11, 12, 13],
[91, 2, 3],
[52, 23, 24]])
>>> evals, evecs = LA.eig(a)
>>> evals
array([ 61.69905021, -23.82135282, -0.8776974 ])
>>> evecs
array([[-3.26538091e-01, -2.63826498e-01, 9.03547963e-04],
[-5.36838695e-01, 9.49508315e-01, -7.35214463e-01],
[-7.77931289e-01, -1.69792632e-01, 6.77833960e-01]])
>>>