There could be several ways to delete a duplicate column from a dataframe. One of the simplest ways is to find the duplicate column using the duplicated() function and then remove it.
Here is an example of that.
import pandas as pd
df1 = pd.DataFrame({"name": ['AA', 'BB', 'CC', 'DD', 'EE', 'HH', 'II'], "age": [34, 12, 56, 43, 23, 41, 52]})
df2 = pd.DataFrame({"name": ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG'], "income": [3434, 1122, 2156, 4334, 54523, 4321, 6541]})
df = pd.concat([df1, df2], axis=1)
df = df.loc[:, ~df.columns.duplicated()]
print(df)
The above code will print the following output. Although df1 and df2 have the column 'name', the final dataframe does not have the duplicate column 'name'.