Attribute "learning_rate_ " of the CatBoost classifier can be used to find the learning rate used for training.
This following examples show how to use this attribute.
from catboost import CatBoostClassifierimport numpy as npdef generate_train_data(): """ Randomly generate train test data and labels """ np.random.seed(7) # train data feature_count = 10 train_data_count = 500 train_data = np.reshape(np.random.random(train_data_count * feature_count), (train_data_count, feature_count)) train_labels = np.round(np.random.random(train_data_count)) return train_data, train_labelsif __name__ == "__main__": X_train, y_train = generate_train_data() # train the model model = CatBoostClassifier(verbose=False) model.fit(X_train, y_train) # get the learning rate print("Learning rate: ", model.learning_rate_)