Pandas DataFrame has query() function that can be used to query the columns of a DataFrame with some boolean expressions.
Here is an example:
The following DataFrame has three columns: id, age, and salary. By giving boolean expressions as arguments to the query() function, you can select the desired rows from the DataFrame.
>>> import pandas as pd
>>> df = pd.DataFrame({'id': [11, 12, 13, 14, 15, 16, 17], 'age': [21, 43, 12, 54, 23, 76, 34], 'salary': [4234, 4321, 654, 2342, 65456, 6453, 12334]})
>>> df
id age salary
0 11 21 4234
1 12 43 4321
2 13 12 654
3 14 54 2342
4 15 23 65456
5 16 76 6453
6 17 34 12334
>>> df.query('salary > 2345 and age < 50')
id age salary
0 11 21 4234
1 12 43 4321
4 15 23 65456
6 17 34 12334
>>> df.query('salary > 12345 and age > 45')
Empty DataFrame
Columns: [id, age, salary]
Index: []
>>> df.query('salary > 5345 and age > 45')
id age salary
5 16 76 6453