Here is an example to scale the feature values in the range 0-5.
>>> from sklearn.datasets import make_classification
>>> X,y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=1)
>>> X
array([[-0.19183555, 1.05492298, -0.7290756 , -1.14651383, 1.44634283],
[-1.11731035, 0.79495321, 3.11651775, -2.85961623, -1.52637437],
[ 0.2344157 , -1.92617151, 2.43027958, 1.49509867, -3.42524143],
[-0.67124613, 0.72558433, 1.73994406, -2.00875146, -0.60483688],
[-0.0126646 , 0.14092825, 2.41932059, -1.52320683, -1.60290743],
[ 1.6924546 , 0.0230103 , -1.07460638, 0.55132541, 0.78712117],
[ 0.74204416, -1.91437196, 3.84266872, 0.70896364, -4.42287433],
[-0.74715829, -0.36632248, -2.17641632, 1.72073855, 1.23169963],
[-0.88762896, 0.59936399, -1.18938753, -0.22942496, 1.37496472],
[ 1.65980218, -1.04052679, 0.89368622, 1.03584131, -1.55118469]])
>>> from sklearn.preprocessing import MinMaxScaler
>>> scaler = MinMaxScaler(feature_range=(0,5))
>>> X1=scaler.fit_transform(X)
>>> X1
array([[1.64689007, 5. , 1.20229296, 1.87005427, 5. ],
[0. , 4.56396926, 4.39679289, 0. , 2.46753518],
[2.4054077 , 0. , 3.82674099, 4.75368733, 0.84988583],
[0.79377497, 4.44762126, 3.25328547, 0.92881972, 3.25259515],
[1.96572626, 3.46701483, 3.81763746, 1.45884922, 2.40233648],
[5. , 3.26923856, 0.91526364, 3.72344698, 4.43840751],
[3.30873675, 0.01979063, 5. , 3.8955278 , 0. ],
[0.65868865, 2.61623547, 0. , 5. , 4.81714495],
[0.40871993, 4.23591992, 0.81991597, 2.87116544, 4.93919282],
[4.94189474, 1.4854355 , 2.55030666, 4.2523535 , 2.4463992 ]])