You can use Numpy functions isnan() and any() to check if any value in a given array is NaN.
Here is an example:
>>> import numpy as np>>> aa=np.array([[np.nan, 0, 1],[4,6,np.nan],[8,np.nan,9]])>>> aaarray([[nan, 0., 1.], [ 4., 6., nan], [ 8., nan, 9.]])>>> np.isnan(aa)array([[ True, False, False], [False, False, True], [False, True, False]])>>> np.any(np.isnan(aa))True>>>
>>> import numpy as np
>>> aa=np.array([[np.nan, 0, 1],[4,6,np.nan],[8,np.nan,9]])
>>> aa
array([[nan, 0., 1.],
[ 4., 6., nan],
[ 8., nan, 9.]])
>>> np.isnan(aa)
array([[ True, False, False],
[False, False, True],
[False, True, False]])
>>> np.any(np.isnan(aa))
True
>>>