Numpy function nan_to_num() can be used to replace NaN with any given value. You can supply the given value to the argument 'nan' of this function.
Here is an example to replace NaN with 0 or 100:
>>> import numpy as np>>> aa = np.array([[np.nan,4,5], [9,10,np.nan]])>>> aaarray([[nan, 4., 5.], [ 9., 10., nan]])>>> np.nan_to_num(aa, nan=0)array([[ 0., 4., 5.], [ 9., 10., 0.]])>>> np.nan_to_num(aa, nan=100)array([[100., 4., 5.], [ 9., 10., 100.]])>>>
>>> import numpy as np
>>> aa = np.array([[np.nan,4,5], [9,10,np.nan]])
>>> aa
array([[nan, 4., 5.],
[ 9., 10., nan]])
>>> np.nan_to_num(aa, nan=0)
array([[ 0., 4., 5.],
[ 9., 10., 0.]])
>>> np.nan_to_num(aa, nan=100)
array([[100., 4., 5.],
[ 9., 10., 100.]])
>>>