You can use the replace() function of Pandas. You need to pass a dictionary to this function in this format:
{column_name:{'old value1':'new value1', 'old value2':'new value2',...}}
Here is an example to illustrate it:
>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame({'id1':[1,2,3,4,5,6,7,8,9,10],'class':['pos','pos','neg','pos','neg','neg','pos','neg','neg','pos']})
>>> df
id1 class
0 1 pos
1 2 pos
2 3 neg
3 4 pos
4 5 neg
5 6 neg
6 7 pos
7 8 neg
8 9 neg
9 10 pos
>>> df1=df.replace({'class':{'pos':1, 'neg':0}})
>>> df1
id1 class
0 1 1
1 2 1
2 3 0
3 4 1
4 5 0
5 6 0
6 7 1
7 8 0
8 9 0
9 10 1